MENU

Click here to

×

Are you sure ?

Yes, do it No, cancel

Time Reversal-Based Protoacoustic Reconstruction for Range and Dose Verification in Proton Therapy

Y Yu1 , D Zhang1 , L Xing2 , H Peng1*, (1) Wuhan University, Wuhan, (2) Stanford University School of Medicine, Stanford, CA

Presentations

(Tuesday, 7/16/2019) 1:45 PM - 3:45 PM

Room: Stars at Night Ballroom 4

Purpose: In vivo range verification in proton therapy is a critical step to help minimize range and dose uncertainty. We propose to employ a time reversal (TR)-based approach using proton-induced acoustics (protoacoustics) to reconstruct pressure/dose distribution in heterogeneous tissues.

Methods: Dose distribution of mono-energetic proton pencil beam in a CT-based patient phantom was calculated by Monte Carlo simulation. K-wave toolbox was used to investigate protoacoustic pressurization, propagation and reconstruction. To address the tissue heterogeneity effect, a number of physical parameters, including mass density, speed of sound, volumetric thermal expansion coefficient, isobaric specific heat capacity and attenuation power law prefactor, were empirically converted from CT number. The performance was evaluated using two figures of merit: mean square error (MSE) of pressure profiles and Bragg peak localization error. The impact of six parameters of the TR inversion was examined, including number of sensors, sampling duration, sampling timestep, spill time, noise level and number of iterations.

Results: The quantitative accuracy of TR reconstruction and its dependency on the selected parameters is presented. Under optimum conditions, the positioning accuracy of the Bragg peak can be controlled below 1 mm. The dose accuracy can be controlled ~10%.

Conclusion: The feasibility of TR-based protoacoustic reconstruction for proton range verification was first demonstrated. The approach is not only applicable to pencil beam, but also has potential to be extended to passive scattering systems.

Keywords

Protons, Reconstruction, Dose

Taxonomy

Not Applicable / None Entered.

Contact Email