

Volumetric Dose Prediction On Head and Neck Cancer Patients with a Novel **Deep Learning Architecture: Hierarchically Densely Connected U-Net**

MO-K-DBRA-8

Session:	Data Science: Applications in Radiation Therapy
Date:	07/30/2018
Time:	04:30PM - 06:00PM

Introduction

- Treatment planning for head and neck (H&N) cancer is regarded as one of the most 0 complicated due to large target volume, multiple prescription dose levels, and many radiation-sensitive critical structures near the target.
- Requires a high level of human expertise and a tremendous amount of effort to produce personalized high quality plans.
- We propose to develop model that can predict 3D clinical dose distributions from 0 contours and prescription dose for H&N cancer patients.
 - Can be used as a clinical guidance tool for treatment planners to improve plan quality and planning efficiency.

Hierarchically Dense U-net (HD U-net) Architecture

Combines 2 state-of-the-art deep learning models:

- U-net
 - Voxel-to-voxel mapping for 3D data
 - Capable of capturing both global and local information
 - DenseNet (CVPR 2017, Best Paper Award)
 - Reduces vanishing gradient problem
 - Strenghten feature propagation
 - Encourage feature reuse
 - Reduces number of necessary trainable parameters

Training/Validation/Testing Data

- 120 H&N patients
 - For each patient: 1-5 PTVs with prescription doses ranging from 42.5Gy to 72Gy 0
 - 20 randomly selected as holdout test data 0
- Remaining 100 used for 5-fold cross validation (80 training and 20 validation)
- o Input

0

- 96 x 96 x 64 (5 mm³) patch randomly selected at each training iteration 0
- 22 organs at risk included as masks in separate channels
- PTV masks assigned their prescription dose and included as a channel Output is the predicted dose distribution
- Mean squared error taken between prediction and reference clinical dose 0

TO 15

Trainable	
parameters	
Prediction	
time for 1	5.
patient	
	Exact model arc
Layer	Lavor typo
number	саует туре
1	Input
2	Dense Conv
3	Dense Conv
4	Dense Downsa
5	Dense Conv
6	Dense Conv
7	Dense Downsa
	Dense Downsai
ð O	Dense Con
9	Dense Conv
10	Dense Downsa
11	Dense Conv
12	Dense Conv
13	Dense Downsa
14	Dense Conv
15	Dense Conv
16	Dense Conv
17	Dense Conv
18	U-net Upsam
19	Dense Conv
20	Dense Conv
21	U-net Upsamp
22	Dense Conv
23	Dense Conv
24	U-net Upsamp
25	Dense Conv
26	Dense Conv
27	U-net Upsamp
28	Dense Conv
29	Dense Conv
30	Conv
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	

Radiation Oncology

© Dan Nguyen, Ph.D., MAIA Lab, 2018 https://www.utsouthwestern.edu/labs/maia/

UTSouthwestern Medical Center