

in projection domain.

AFFLIATIONS

¹Department of Radiation Oncology, Graduate School of Medicine, Hokkaido University, Japan, ²Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Japan, ³Department of Radiation Oncology, Stanford University, US, ⁴Department of Radiation Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan, ⁵Department of Radiation Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.

CBCT Projection-Domain Scatter Correction with a Residual Convolutional Neural Network (TH-EF-202-4)

Y. NOMURA^{1*}, Q. XU^{2,3}, H. SHIRATO^{2,4}, S. SHIMIZU^{2,5} and L. XING^{2,3}

This study developed a nearly-real-time CBCT scatter correction method using a Unet-based residual convolutional neural network

The proposed CNN-based method provided better intensity accuracy in reconstructed images than the adaptive scatter kernel superposition (ASKS)-based method.

Computation time for calculating 360 projections was around 2.3 seconds.

PRESENTATION DATE & TIME Session "Cone-beam Computed Tomography" Thursday, 2nd of August, 1:40PM – 1:50PM @ ROOM 202

